Author Affiliations
Abstract
1 Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
2 Universitat Rovira i Virgili (URV), Física i Cristal·lografia de Materials i Nanomaterials (FiCMA), 43007 Tarragona, Spain
3 Grupo de Investigación en Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
We demonstrate multi-gigahertz continuous-wave mode-locking of a Yb:KLuW waveguide laser. A femtosecond-laser-inscribed Yb:KLuW channel waveguide in an extended laser cavity delivers a fundamentally mode-locked laser near 1030 nm. A tunable few-centimeter-long cavity containing a single-walled carbon nanotube saturable absorber as mode-locker generates self-starting femtosecond pulses with average output powers exceeding 210 mW at repetition rates of 2.27, 2.69, and 3.55 GHz. The laser cavity, which includes a wedged waveguide, is extended by using a lens pair that controls the laser fluence on the saturable absorber for reliable mode-locked operation without instability. The presented laser performance, mode-locked up to 3.55 GHz, highly suggests the potential of crystalline Yb:KLuW waveguides for realizing high-power ultrafast lasers with higher GHz repetition rates in a quasi-monolithic cavity.
Photonics Research
2022, 10(11): 2584
Author Affiliations
Abstract
1 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489Berlin, Germany
2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou221116, China
3 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
4 Key Laboratory of Advanced Ceramics and Mechanical Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
5 Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 34141Daejeon, Republic of Korea
6 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 14050 Caen Cedex 4, France
7 Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), 43007Tarragona, Spain
8 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China
We report on a power-scalable sub-100-fs laser in the 2-μm spectral range using a Tm3+-doped ‘mixed’ (Lu,Sc)2O3 sesquioxide ceramic as an active medium. Pulses as short as 58 fs at 2076 nm with an average output power of 114 mW at a pulse repetition rate of approximately 82.9 MHz are generated by employing single-walled carbon nanotubes as a saturable absorber. A higher average power of 350 mW at 2075 nm is obtained at the expense of the pulse duration (65 fs). A maximum average power of 486 mW is achieved for a pulse duration of 98 fs and an optical conversion efficiency of 22.3%, representing the highest value ever reported from sub-100-fs mode-locked Tm lasers.
2-μm mode-locked laser single-walled carbon nanotubes Tm:2O3 
High Power Laser Science and Engineering
2021, 9(4): 04000e50
Author Affiliations
Abstract
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
3 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, Caen 14050, France
4 Universitat Rovira i Virgili (URV), Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA), Marcel.li Domingo 1, 43007 Tarragona, Spain
5 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
This publisher’s note corrects the authors’ affiliations in Photon. Res.9, 357 (2021)PRHEIZ2327-912510.1364/PRJ.413276.
Photonics Research
2021, 9(7): 07001343
Author Affiliations
Abstract
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
3 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, Caen 14050, France
4 Universitat Rovira i Virgili (URV), Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA), Marcel.li Domingo 1, 43007 Tarragona, Spain
5 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and fine micromachining. To extend these prospects further, in the present work we push forward the advancement of such femtosecond structured laser sources into the 2-μm spectral region. Ultrashort-pulse Hermite– and Laguerre–Gaussian laser modes both with a pulse duration around 100 fs are successfully produced from a compact solid-state laser in combination with a simple single-cylindrical-lens converter. The negligible beam astigmatism, the broad optical spectra, and the almost chirp-free pulses emphasize the high reliability of this laser source. This work, as a proof of principle study, paves the way toward few-cycle pulse generation of optical vortices at 2 μm. The presented light source can enable new research in the fields of interaction with organic materials, next generation optical detection, and optical vortex infrared supercontinuum.
Photonics Research
2021, 9(3): 03000357
Author Affiliations
Abstract
1 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489Berlin, Germany
2 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489Berlin, Germany
3 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou221116, China
4 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai200092, China
5 Departament Química Física i Inorgànica, Física i Cristal.lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Universitat Rovira i Virgili, Campus Sescelades, E-43007Tarragona, Spain
6 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 6 Boulevard du Maréchal Juin, 14050Caen Cedex 4, France
7 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China
We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of $0.05\pm 0.005~\text{cm}^{-1}$ at $2.09~\unicode[STIX]{x03BC}\text{m}$. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 $\unicode[STIX]{x03BC}\text{m}$ spectral range.
high-power laser Ho:YAG mid-IR laser single-crystal fiber 
High Power Laser Science and Engineering
2020, 8(2): 02000e25
Author Affiliations
Abstract
1 Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
2 ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
3 Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
4 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
5 Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
6 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and μ-Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency η of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3 dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively Q-switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with η=34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.
Waveguides, channeled Lasers, Q-switched Laser materials 
Photonics Research
2018, 6(10): 10000971
Author Affiliations
Abstract
1 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
2 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
3 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou 221116, China
4 Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, South Korea
5 Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Departament de Química Física i Inòrganica, Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Spain
6 ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia
A mode-locked laser based on a Tm:CNNGG disordered crystal as an active medium and a single-walled carbon nanotube saturable absorber is demonstrated, operating at a central wavelength of 2018 nm. Transform-limited 84 fs pulses are generated with an average output power of 22 mW at a repetition rate of 90 MHz. A maximum output power of 98 mW is obtained at a slightly longer pulse duration of 114 fs.
Mode-locked lasers Laser materials Infrared and far-infrared lasers 
Photonics Research
2018, 6(8): 08000800

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!